ABSTRACT

Aim: The aim of the study is to evaluate the bioactive compounds, toxicity and anti-bacterial activities of leaf extract of *Vernonia amygdalina*.

Methodology: The phytochemical analysis of *Vernonia amygdalina* to detect the presence of bioactive compounds (oxalate, tannins, saponins, flavonoid, cardiac glycoside, alkaloids, steroid, balsams, essential oil and saponin glycoside) was performed using standard methods. The antibacterial activity of the leaf extracts was determined using agar well diffusion method against...
clinical isolates of *Salmonella typhi* and *Salmonella paratyphi*. The toxicity testing was carried out with albino rats using standard method.

Results: Different secondary metabolites were found to be present in the leaf extracts after the phytochemical screening. They include tannins, saponins, flavonoids, cardiac glycosides, alkaloids, glycosides, steroid, saponin glycoside, volatile oil and Balsams. Highest zone of inhibition of 10.0 mm and 20.0 mm was recorded against *S. typhi* and *S. paratyphi* aqueous and ethanolic extracts of the leaves respectively. Minimum Inhibitory Concentration (MIC) of 100 mg/ml of the aqueous extract was recorded against *S. typhi* and *S. paratyphi*. A MIC of 25 mg/ml of the ethanolic extract was recorded against *S. typhi* and *S. paratyphi*. The acute toxicity tests reveal no occurrence of death after 2 weeks of administering 5000 mg/kg body weight of the extracts to the albino rats.

Conclusion: The results revealed promising potentials of the leaves of *Vernonia amygdalina* in the treatment of infectious diseases, due to its low toxicity. However, further studies need to be conducted to isolate and characterize the active metabolites present in the leaves.

Keywords: *Vernonia amygdalina; Salmonella typhi; Salmonella paratyphi; antibacterial activity; acute toxicity.**

1. INTRODUCTION

Bitter leaf, scientifically known as *Vernonia amygdalina*, belongs to the family Asteraceae. It is originated from Tropical Africa [1]. It is mainly cultivated in the Southern part of Nigeria as a vegetable and for medicinal purpose. In Nigeria, it is called ‘Ewuro jije’ by the Yoruba’s, ‘Olugbo’ by the Igbo’s and ‘Shiwaka’ by the Hausa’s [2]. It is used for curing diseases such as diarrhea, as well as management of fever [3]. The medicinal value of some plants lies in some chemical substances that produce definite physiological actions in the human body; examples of these most important bioactive constituents are alkaloids, tannis, flavonoids essential oil and phenolic compounds [3]. The leaves of *Vernonia amygdalina* are green with a characteristic odour and bitter taste. *Vernonia amygdalina* is a valuable medicinal plant that is widespread in West Africa, it is known as bitter leaf due to its characteristic bitter taste and flavour, and can be used as an active anticancer, antibacterial, antimalarial and antiparasitic agent [3]. This plant contains complex active components that are useful pharmacologically.

Many of these indigenous medicinal plants are used as spices and food plants [4,5]. Before scientists made inroads into the research of drugs that cure human infections, traditional means of treating diseases involved using concoctions from plants, either in single form or in mixtures. They do so without knowing that these agents were used against some pathogenic microorganisms [6]. Plants have been found useful to man, not only as food or as sources of raw materials for industrial purposes, but also as sources of medicaments [7]. Secondary metabolites which include tannins, cardiac glycosides, alkaloids and saponins were reported to be present in higher plants [8], with reports of *Vernonia amygdalina* containing many secondary metabolites [2].

Fasola et al. [9] reported *V. amygdalina* to possess hypoglycemic activity. They observed a close-dependent reduction in fasting blood sugar level in alloxan-induced diabetic rats after treatment with different concentrations of the aqueous leaf extracts. Yedjou et al. [10] also demonstrated *V. amygdalina* leaf extracts as a DNA-damaging of the anticancer agent in the management of breast cancer. The aim of this research is to carry out phytochemical analysis of the leaf of *Vernonia amygdalina*, study the antibacterial effects of the leaf extracts of *Vernonia amygdalina* on selected enterobacteria and to estimate the toxic effects of aqueous and ethanolic extracts from *Vernonia amygdalina* in albino Rats.

2. MATERIALS AND METHODS

2.1 Collection and Identification of Leaf Materials

Vernonia amygdalina (Bitter leaf) was obtained from Meat Market, Sokoto, Nigeria. The collected leaf was identified and authenticated at the Herbarium Section of the Department of Biological Sciences, Botany Unit of Usmanu Danfodiyo University Sokoto, Sokoto State, Nigeria. Voucher specimen number UDUH/ANS/0100 was obtained.

2.2 Preparation and Extraction of Leaf Extracts

The fresh leaves were allowed to dry completely at room temperature under shade before using
them for this study. The leaf material was pulverized using mortar and pestle into a fine powder. Two different solvents were used for the extraction namely: water and ethanol. A 100 g of the powdered leaf was soaked in 1000 ml of each solvent in accordance with Ugochukwu et al. [3]. The solutions were sterilized by filtration using membrane filters (Millipore filters) [11]. The sterile extract obtained was stored in sterile capped bottles and refrigerated until when required for further analysis.

2.3 Characterization and Identification of Salmonella Species

2.3.1 Source of test organism

The test organism for this study (Salmonella species) is member of the family Enterobactriaceae. The pure clinical isolates of *Salmonella typhi* and *Salmonella paratyphi* were obtained from the Department of Medical Microbiology and Parasitology, Specialist Hospital Sokoto, Nigeria. All the clinical isolates were checked for purity by sub-culturing the isolates onto Salmonella-Shigella Agar medium. After 24 hrs of incubation, there were growths of the isolates and they were maintained on nutrient agar slants at 4°C in the refrigerator until required for further use.

2.3.2 Biochemical characterization and serotyping of salmonella

The ISO-6579 [12], standard recommendation was used for biochemical confirmation of Salmonella. The subculture of the characteristic colonies from each Petri dish of Salmonella-Shigella agar medium was made. The triple sugar iron agar (TSI agar), Urea agar/broth, L-lysine decarboxylase, β-galactosidase (ONPG), Voges Proskauer and Indole tests were followed in this order.

In serotyping, a subculture of characteristic colonies from each Petri dish of Salmonella-Shigella agar was transferred onto nutrient agar slopes and incubated overnight at 37°C. Using a wire loop, 3 separate drops (each 0.02 ml) of saline solution were placed onto a clean microscope slide. Growth from the agar slope was added and emulsified to produce a homogeneous suspension. A loopful of *Salmonella* polyvalent 'O' (PSO) anti-serum was mixed with the first drop of suspension and a loopful of *Salmonella* polyvalent 'H' (PSH) anti-serum with the second drop. It was rocked gently back and forth and examined for agglutination against a black background. Positive results were recorded if agglutination occurred within 20 min after shaking against dark background. In order to exclude any spontaneous agglutination (auto-agglutination), a negative control (using physiological saline solution and bacterial colony to be tested) was included in the test.

2.3.3 Standardization of bacteria cell suspension

The nutrient broth cultures of the organisms for this study were taken and inoculated at 37°C on a fresh agar plate of nutrient agar for 24 hours. Sterile distilled water (2 ml) was poured on it and then mixed with the inoculums, 1 ml of each was taken and transferred into 9 ml of sterile distilled water and diluted to 0.5 Macfarland Standard giving a load of 10^5-10^6 organisms/ml. One hundred microlitres of these were taken and poured onto the surface of the agar and then spread evenly with the use of a spreader on the plate to be used for the study.

2.3.4 Preparation of extracts concentration

The different extracts of the sample were reconstituted with sterile distilled water. The initial concentration of each leaf extracts (1 g) was diluted using 10 ml of sterile water to obtain the stock extract. From this stock extract, different concentrations were obtained 100 mg/ml, 50 mg/ml, 25 mg/ml, 12.5 mg/ml, 6.25 mg/ml, and 3.125 mg/ml for each of the extracts (water and ethanol).

2.4 Determination of Antibacterial Activities of Leaf Extracts

Agar-well diffusion Method was employed for the antibacterial testing [13]. The antibacterial screening of the extracts was done as described by [13]. Prepared and sterilized nutrient agar was poured in sterile Petri dishes and was allowed to solidify. A loopful of the test culture of MacFarland standard was dropped on the solidified agar and the organism was spread all over the surface of the agar using a spreader (wire loop). The inoculated plates were allowed to dry after which wells of approximately 5 mm in diameter were made on the surface of the agar medium using a sterile cork borer. Then, 0.2 ml of different concentrations of the extract was separately introduced into the different wells that have been labelled accordingly. This procedure was repeated in triplicate and allowed to stay for
30 mins on the bench after which they were incubated for 24 h at 37°C. At the end of incubation, observed zones of inhibition were measured and recorded to the nearest millimeter.

2.5 Determination of Minimum Inhibitory Concentration of the Extracts

This was carried out using the agar diffusion method following the recommendations of the Clinical and Laboratory Standard Institute [14]. Different concentrations 100, 50, 25, 12.5, 6.25 and 3.125 mg/ml of the extracts were prepared and 1 ml from each of the concentrations of the extracts was added onto molten nutrient agar and was mixed thoroughly. Then, 1 µml of an overnight nutrient broth culture of the test isolates were added to each plate of the Mueller-Hinton agar containing the extracts and incubated at 37°C for 24 h. The experiment was conducted in triplicate for both the isolates tested. Plates without visible growth of the organisms in each concentration were taken as the MIC [11].

2.6 Phytochemical Screening of Leaf

The phytochemical analysis was carried out in the Department of Pharmacognosy of the Faculty of Pharmaceutical Sciences of Usmanu Danfodiyo University Sokoto. The analysis was conducted in accordance with the standard procedure by Harbone [15]; Trease and Evans [16]; Harbone [17]; El-Olemy et al. [18].

2.6.1 Test for tannins

Ferric Chloride solution 5% was added drop by drop to 2-3 ml of the extract and the color produced was observed. Condensed tannins usually give a dark green color, hydrolysable tannins give blue-black color [15].

2.6.2 Test for saponins

Five millilitres (5 ml) of the extract solution was placed in a test tube and 5 ml water was added to it and shaken. Then observe the froth formation, which indicate the presence of saponins [16].

2.6.3 Test for flavonoids

Three (3) millilitre aliquot of the filtrate was mixed with one millilitre of 10% NaOH. Yellow color was developed which indicate the possible presence of flavonoid compounds [15].

2.6.4 Test for cardiac glycosides

Five millilitres (5 ml) of each extract was treated with 2 ml of glacial acetic acid containing 1 drop of ferric chloride solution (3.5%). The content was allowed to stand for one minute. One millilitre (1 ml) of concentrated H₂SO₄ was carefully poured down the wall of the tube. A reddish brown ring of the interface indicated a deoxysugar characteristic of cardenolides [17].

2.6.5 Test for alkaloid

Two millilitre (2 ml) of each extract was stirred with 2 ml of 10% dilute hydrochloric acid. Then, 1 ml was treated with a few drops of Wagner's reagent and second 1 ml portion treated with Mayer's reagent. Deep brown precipitation indicated a positive test [17].

2.6.6 Test for glycosides

The 2.5 ml of 50% H₂SO₄ was added to 5ml of each of the extracts in test tubes. The mixture was heated in boiling water for 15 minutes. Cooled and neutralized with 10% NaOH, 5 ml of Fehling’s solution was added and the mixture was boiled again. A brick-red precipitate was observed, which indicated the presence of glycosides [17].

2.6.7 Test for steroids

This was carried out according to the method of [17]. One (1) ml of each leaf extract was added in 2 ml of chloroform, and 2 ml of sulphuric acid (H₂SO₄) was added thereafter. A red colouration confirmed the presence of steroids.

2.6.8 Test for volatile oils

One milliliter (1 ml) of each of the extract fractions was mixed with 5ml of dilute HCL. A white precipitate was formed, which indicated the presence of volatile oils [16].

2.7 Toxicity Study of the Leaf Extracts of Vernonia Amygdalina

Acute oral toxicity test was carried out using the procedure of the Organization for Economic Cooperation and Development [19]. Ten (10) randomly selected Albino rats were used. The rats of both sexes weighing 160-200 g were used for the study. The animals were obtained from
3. RESULTS AND DISCUSSION

The phytochemical screening of the leaf revealed the presence of bioactive compounds including alkaloids, tannins, glycoside, saponin, cardiac glycoside, steroid and flavonoids, etc (Table 1). These phytochemicals have been proved to possess biocidal and inhibitory activities against a wide range of microorganisms [20,21,22]. The presence of these phytochemicals in the extracts could, therefore, explain their antibacterial activities as observed in this study. From this study, it was observed that bioactive components are abundant in these leaves and that the ethanol extracts exhibited higher inhibitory activity on the test organisms. This can be deduced to the ability of ethanol to extract more of the essential oil and secondary plant metabolites which are believed to exert antibacterial activity on test organisms [23]. The leaf appeared to have the best activity at the extracts concentration of 100 mg/ml in the agar well diffusion experiments. The aqueous extract of V. amygdalina had a decrease in the level of inhibition against isolates at the highest concentration compared to the positive control, inhibition zones ranging from 10.0 – 8.0 mm. This analysis shows that ethanol extract of V. amygdalina showed an increase in the level of inhibition against Salmonella typhi to Salmonella paratyphi. Ogundare [23] reports have shown results similar to this.

Table 4 shows the minimum inhibitory concentrations (MICs) of both aqueous and ethanolic extracts on test organisms using agar dilution method. Low MIC is an indication of high efficacy of the leaf extracts while high MIC indicates low efficacy or possible development of resistance by the microorganisms to the antimicrobial [24]. The aqueous extract showed its MIC at high concentration of 100 mg/ml while ethanolic extract has a MIC of 25 mg/ml. The minimum inhibitory concentrations (MIC) of aqueous and ethanolic leaf extracts on the test organisms ranged between 25 mg/ml –100 mg/ml. The minimum inhibitory concentrations of ethanolic extracts of V. amygdalina was 25 mg/ml while aqueous leaf extracts of V. amygdalina had their MIC as 100 mg/ml as shown in (Tables 4).

Ooral administration of a single dose of ethanol and aqueous extracts of V. amygdalina of 5000 mg/kg body weight of the test animals produced no mortality in them. The general signs and symptoms of toxicity were observed for a period of 14 days after administration of the extracts (Table 5). However, the following observations were made during the exposure period; slow movement, scratching of hair and mouth, tremor, raised hair coat and weakness. Thus, the median dose (LD50) of the leaf extracts was estimated to be greater than 5000 mg/kg because 5000 mg/kg is the highest dose according to Guideline for testing chemicals [19]. The extracts a therefore be classified as practically non-toxic using the Organization for Economic and Cooperation Development (OECD) guideline classification of a range of LD50. This suggests the possibility of using the ethanol extracts of V. amygdalina in treating the diseases caused by the test organisms.

Table 1. Phytochemical properties of the leaf of Vernonia amygdalina leaf extract

<table>
<thead>
<tr>
<th>Phytochemical</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tannins</td>
<td>+</td>
</tr>
<tr>
<td>Saponins</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoid</td>
<td>+</td>
</tr>
<tr>
<td>Cardiac glycoside</td>
<td>+</td>
</tr>
<tr>
<td>Alkaloid</td>
<td>+</td>
</tr>
<tr>
<td>Glycosides</td>
<td>+</td>
</tr>
<tr>
<td>Steroid</td>
<td>+</td>
</tr>
<tr>
<td>Volatile oil</td>
<td>+</td>
</tr>
</tbody>
</table>

Key: - = Not detected, + = Detected

The results of phytochemical screening of V. amygdalina leaves revealed the presence of the following secondary metabolites tannins, saponins, flavonoid, steroid, cardiac glycoside, glycosides, alkaloid, saponin glycoside, volatile oil and balsams (Table 1).
Table 2. The antibacterial activities of aqueous leaf extracts of *V. amygdalina*

<table>
<thead>
<tr>
<th>Test organism</th>
<th>Zone of inhibition (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>×</td>
</tr>
<tr>
<td>Salmonella paratyphi</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Key: Values are mean of three replicates (n=3) × = No zone of inhibition +ve ctrl = Pemaclav drug (10 mg/ml)

Table 3. The antibacterial activities of ethanolic leaf extracts of *V. amygdalina*

<table>
<thead>
<tr>
<th>Test organism</th>
<th>Zone of inhibition (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>20.0</td>
</tr>
<tr>
<td>Salmonella paratyphi</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Key: Values are mean of three replicates (n=3) × = No zone of inhibition +ve control = Pemaclav drug (10 mg/ml)

Table 4. Minimum inhibitory concentration of the aqueous and ethanolic leaf extracts of *V. amygdalina* against *salmonella* spp

<table>
<thead>
<tr>
<th>Bacterial isolates</th>
<th>Aqueous extract MIC (mg/ml)</th>
<th>Ethanol extract MIC (mg/ml)</th>
<th>Pemaclav drug (Amoxicillin combination) MIC (mg/ml) 10 mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella typhi</td>
<td>100</td>
<td>25</td>
<td>12</td>
</tr>
<tr>
<td>Salmonella paratyphi</td>
<td>100</td>
<td>25</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 5. Acute toxicity results on ten randomly selected albino rats

<table>
<thead>
<tr>
<th>Dose (mg/kg)</th>
<th>Time duration</th>
<th>No. of animals</th>
<th>No of deaths</th>
<th>Observation Signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000</td>
<td>0-30 minutes</td>
<td>5(a)</td>
<td>0</td>
<td>Weakness, slow movement immediately after administration.</td>
</tr>
<tr>
<td></td>
<td>1 hour</td>
<td></td>
<td></td>
<td>Continuously scratching of mouth part, fur and body, tremor.</td>
</tr>
<tr>
<td></td>
<td>24 hours</td>
<td></td>
<td></td>
<td>Ruffled fur, scratching of their nostril.</td>
</tr>
<tr>
<td></td>
<td>48 hours</td>
<td></td>
<td></td>
<td>Normal movement and less scratching of body part.</td>
</tr>
<tr>
<td></td>
<td>2 weeks</td>
<td></td>
<td></td>
<td>No death rate recorded.</td>
</tr>
<tr>
<td>5000</td>
<td>0-30 minutes</td>
<td>5(b)</td>
<td>0</td>
<td>Increased breathing</td>
</tr>
<tr>
<td></td>
<td>1 hour</td>
<td></td>
<td></td>
<td>Scratching of mouth and body parts</td>
</tr>
<tr>
<td></td>
<td>24 hours</td>
<td></td>
<td></td>
<td>Ruffled fur</td>
</tr>
<tr>
<td></td>
<td>48 hours</td>
<td></td>
<td></td>
<td>No scratching of body part</td>
</tr>
<tr>
<td></td>
<td>2 weeks</td>
<td></td>
<td></td>
<td>No death rate recorded</td>
</tr>
</tbody>
</table>

Key: a = the first 5 rats were given aqueous leaf extracts of *V. amygdalina* b = the last 5 rats were given ethanolic leaf extracts of *V. amygdalina*

The results revealed that the aqueous extract of *V. amygdalina* had less inhibitory activity on the test organisms (Table 2), while the ethanolic extracts of *V. amygdalina* (Table 3) had antibacterial activity against the isolates tested. At 100 mg/ml concentration, the ethanolic extracts showed greater antibacterial activity than the aqueous extracts as indicated by zones of inhibition. At 12.5 mg/ml – 3.125 mg/ml, the ethanolic extracts of *V. amygdalina* (Table 3) was not effective on the isolates. While at 50 mg/ml – 3.125 mg/ml the aqueous extracts of *V. amygdalina* (Table 2) was not effective on the isolates. This indicates that the antibacterial activity of this leaf extracts is concentration dependent. Ethanolic extract showed higher inhibitory zones than aqueous extract and when compared to a standard antibiotic such as Pemaclav drug had an appreciable zone of inhibition on the test organisms.

4. CONCLUSION

Vernonia amygdalina is an important plant with many domestic uses and ethnopharmacological importance. The leaves and other part of the plants are consumed and used for various applications. This study was conducted to
determine the phytoconstituents and antibacterial activity of the aqueous and the ethanolic extracts of the leaves. The study reveals the presence of different bioactive compounds and a varying degree of activity against both isolates it was tested against. Further studies are required to isolate and characterize the bioactive compounds responsible for the activity as well as other biological importance of the leaves and other parts of the plants.

CONSENT

It is not applicable.

ETHICAL APPROVAL

The animals were obtained from the Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto. The study was approved by animal ethic research committee of the same institution.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

© 2019 Farouq et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here:
http://www.sdiarticle3.com/review-history/47753